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Introduction



OVERVIEW

- Model comparison is one level of Bayesian inference

- Model comparison algorithms can take advantage of parallel computing

- Many parallel programming models and hardware platforms exist

- Some problems can be better suited for certain software and hardware combinations

- Tutorial will cover three algorithm/programming model/hardware combinations.
Starting place for exploring other combinations.



INTRODUCTION: MODEL COMPARISON
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INTRODUCTION: MODEL COMPARISON
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INTRODUCTION: PARALLEL COMPUTING

Main idea
Break task into pieces that can be worked on concurrently
Why?

- More efficient use of resources

- Get results more quickly

- Solve massive problems that are intractable otherwise



INTRODUCTION: PARALLEL COMPUTING

Programming models (a.k.a., useful abstractions)

- Shared memory

- Distributed memory

- Hybrid

- Single program, multiple data (SPMD)

- Multiple program, multiple data (MPMD)



INTRODUCTION: PARALLEL COMPUTING

SGI cluster at MCSR



INTRODUCTION: PARALLEL COMPUTING

Intel Xeon Phi




INTRODUCTION: PARALLEL COMPUTING

Nvidia Tesla GPU Accelerator



INTRODUCTION: CHOOSING A METHOD

Is model

o Can model

evaluation be
parallelized?

Use serial NS w/
GPU model
evaluation

Is likelihood
multimodal or
otherwise
difficult?

Use mutli
replace NS

Use combined
chain NS



Algorithms




ALGORITHMS

- Nested sampling

- Combined chains
- Multiple replacement

- Thermodynamic integration
- Reversible jump MCMC
- Sequential Monte Carlo
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ALGORITHMS

- Nested sampling

- Combined chains
- Multiple replacement
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NESTED SAMPLING BASICS

Nested sampling reparameterizes the model evidence integral
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NESTED SAMPLING BASICS
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NESTED SAMPLING BASICS: PRIOR MASS AND LIKELIHOOD

Parameter space

(From Skilling '06)
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NESTED SAMPLING BASICS: PROCEDURE

2 N @ Ol W s

Generate N live samples from the unconstrained prior
SetZ=0and X, =1

Record the lowest likelihood among the N live samples as L,
Estimate X, corresponding to L;

Setw, =X, | — X,
Increment Z by L,w;,

(Optional) Save least-likelihood live sample in list of “dead” samples

Replace the least-likelihood live sample with one sampled from the prior,
constrained by L;

If halting condition is not met, go to 3



NESTED SAMPLING BASICS:

PROCEDURE

Parameter space
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NESTED SAMPLING BASICS: ESTIMATING X,

The likelihood L, at a given parameter vector @, can be computed exactly, but the
associated prior mass X, cannot

At every step of nested sampling, the live samples’ prior mass are distributed as

Ulo, X(L)]
Order statistics of the uniform distribution show
X.
thy = Xijl ~ Beta(N, 1) (13)
X, = [t (14)



NESTED SAMPLING BASICS: ESTIMATING X,

E(logt,) = —1/N (15)
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NESTED SAMPLING: PARALLEL IMPLEMENTATIONS

Combined chain nested sampling Combine multiple independent serial nested
sampling results

Multiple replacement nested sampling Discard and replace multiple samples at each
likelihood threshold

Parallel model evaluation Use serial nested sampling, but parallelize the model
computation
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NESTED SAMPLING: COMBINED CHAIN

First parallel approach

- Run M independent nested sampling processes, each using N live samples

- Resulting discarded samples can be combined and sorted by likelihood; prior mass
estimate is same as in case of one nested sampling process with M x N live samples

- Proofs of the correctness of this approach are available in our 2017 paper.
- Theoretical speed up of (M) over serial method
+ MIMD
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NESTED SAMPLING: MULTIPLE REPLACEMENT

Second parallel approach

- Instead of discarding and replacing one sample, discard and replace R samples at
each likelihood constraint

- Initially proposed by Burkoff, et al., in 2012

- Our 2014 paper found that in order to maintain the same level of precision in
evidence estimate, vRN live samples must be used when R samples are discarded
and replaced for each likelihood constraint

- Theoretical speed up of @(v/R) over serial method
+ MIMD
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NESTED SAMPLING: PARALLEL MODEL EVALUATION

Third parallel approach

- Use serial nested sampling

- Parallelize model evaluation

- ldeal for cases with complex model equations
- Allows use of GPU for computation

- SIMD
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Shared memory approach




SHARED MEMORY: OVERVIEW

- Multiple processors share same memory
- Examples

- Multi-core CPUs

- Intel Xeon Phi
- Advantages

- Processes can easily share data
- Relatively easy to modify programs to use

- Disadvantages

- Without proper safeguards, data can be corrupted by competing processes
- Scalability
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SHARED MEMORY: OVERVIEW

process Memory
———
No threads
. d
- Multiple processes used process <—>rea
. write
- Very straightforward, but no standard _
approach across platforms
process
A

(From https://computing.llnl.gov/tutorials/parallel_comp/)
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https://computing.llnl.gov/tutorials/parallel_comp/

SHARED MEMORY: OVERVIEW

a.out

call sub1()
call sub2()
doi=1,n

With threads Br-Alpel
pthreads Library based. Requires
manual creation, starting, and
synchronization of threads

OpenMP Compiler directive based. ilt{_}? " e |
Manual controls available, but —
simple complier directives can Vs Memory e
be used to parallelize some =l o
serial code. =) y/ﬂ

(From https://computing.llnl.gov/tutorials/parallel_comp/)
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SHARED MEMORY: XEON PHI

Two existing versions for general applications

Knight's Corner (x100) Knight's Landing (x200)
- PCl express card, now discontinued - Bootable, mainboard chip
- Runs only on certain motherboards - Mostly available from workstation
- 4-way simultaneous multithreading per system builders. Expensive
core - 64-72 Intel Atom cores
- 57-61 x86-64 cores - Two 512-bit vector units per core
- 512-bit SIMD units - AVX-512 SIMD instructions
- 512 KB L2 cache per core - Native execution only

- Supports offloading or native execution
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COMBINED-CHAIN NS ON XEON PHI

- In combined-chain, most of the code can be made trivially parallel, so works well

natively on the Phi
- This example code is in C++, but mostly uses C idioms
- Xeon Phi requires Intel C++ compiler. Free for students and in other limited cases
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COMBINED-CHAIN NS ON XEON PHI

Sample struct and static arrays

typedef struct

{
__declspec(align(64)) double theta[NUM_PARAMS];
__declspec(align(6%4)) double logL;
__declspec(align(64)) double logWt;

} sample;

Dynamic arrays (Intel C++ compiler only)

#include <malloc.h>

sample ** samples = (samplex*) mm_malloc(SIZE * sizeof(sample), 64);
// Do some things

_mm_free(samples);
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COMBINED-CHAIN NS ON XEON PHI

Start and collect results from each NS instance

#fpragma omp parallel for
#fpragma vector aligned
for (int i = 0; 1 < N; 1i++)
{
nested_sampling(data, samples[il],
&total_samples[i], 1i);
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COMBINED-CHAIN NS ON XEON PHI

Collecting result samples

int q = 0;

for (int i = 0; i < NUM_CHAINS; i++) {

for (int j = 0; j < total_samples[i]; j++) {
for (int k = 0; k < NUM_PARAMS; k++) {
samples[q].theta[k] = sample_list_2d[i][j].thetalk];

}
samples[q].logL = sample_list_2d[i][j].loglL;
samples[q].logWt = 0.0;

q++;
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COMBINED-CHAIN NS ON XEON PHI

Sorting samples and computing evidence

gsort(samples, *sample_count, sizeof(sample), comparator);
double mean_log t = 1.0 / (NUM_CHAINS * NUM_LIVE_SAMPLES);
double logwidth = log(1.0 - exp(-mean_log_t));
*10gZ = -1.0 * std::numeric_limits<double>::max();
«H = 0.0;
for (int i = 0; i < xsample_count; i++) {
samples[i].logWt = logwidth + samples[i].loglL;
logZnew = log_plus(+logzZ, samples[i].logWt);
*H = exp(samples[i].logWt - logZnew) * samples[i].logL +
exp(*logZ - logZnew) * (*H + =logZ) - logZnew;
*10ogZ = logZnew;
logwidth -= mean_log_t;
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COMBINED-CHAIN NS ON XEON PHI

Sample comparator function

int comparator(const void * lhs, const void * rhs)
{
double diff;
diff = ((sample *)lhs)->logL - ((sample =*)rhs)->logl;
if (diff > 0)
return 1;
else if (diff < 0)
return -1;
else
return 0;
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COMBINED-CHAIN NS ON XEON PHI

SIMD block of likelihood function

#fpragma omp simd
#pragma vector aligned
for (int i = 0; i < NUM_DATA; i++)
{
#pragma vector aligned

for (int j = 0; j < NUM_ATOMS; j++)

{

mock[i] += A[J] * cos(2 %= PI = f[j] * time[i]) +
B[j] * sin(2 = PI = f[j] * time[i]);
}

sq_error[i] = (mock[i] - data[i]) * (mock[i] - datal[il);
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COMBINED-CHAIN NS ON XEON PHI

Other implementation considerations
- main function loads data and sets nested sampling parameters, then calls manager
function

- manager sets up temporary arrays for collecting results from each nested sampling
function, then calls nested_sampling within OpenMP

- Make sure that any temporary arrays used (in explore function, likelihood function,
etc.) are declared with the correct alignment
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SHARED MEMORY: MULTI-CORE CPU

- Common in consumer-grade desktops, laptops, and smartphones
- One processor package, two or more independent processing units

- For development, | used an Intel Xeon E5-1603 v3

- 2.80 GHz
.+ 4 cores
- 10 MB SmartCache
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MULTIPLE REPLACEMENT NS oN CPU

- More serial-only portions of this code, so CPU is perhaps better fit
- This example code is idiomatic C++
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MULTIPLE REPLACEMENT NS oN CPU

Model class

class Model
{
public:
Model(std::vector<double> data_in);
double compute_log likelihood(std::vector<double> theta);
void compute_sq_error(double * A, double * B, double * f,
double * sq_error);
void set_data(std::vector<double> data_in);
std::vector<double> get_data();
private:
std::vector<double> data;

b
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MULTIPLE REPLACEMENT NS oN CPU

class Sample
{
public:
Sample(Model model);
void set_theta(std::vector<double> theta_in);
std::vector<double> get_theta();
void set_logL(double logL_in);
double get_loglL();
void set_logWt(double logWt_in);
double get_logWt();
private:
std::vector<double> theta;
double logL;
double logWt;
b
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MULTIPLE REPLACEMENT NS oN CPU

Within the nested_sampling funcion:

std::vector<Sample> live_samples;
for (int i = 0; i < NUM_LIVE_SAMPLES; i++)
{
Sample live_sample(model);
live_samples.push_back(live_sample);
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MULTIPLE REPLACEMENT NS oN CPU

Sort at each likelihood threshold

std::sort(live_samples.begin(), live_samples.end(), sample_comp);

Comparator function

double sample_comp(Sample a, Sample b)
{

return (a.get_loglL() < b.get_logL());
}

40



MULTIPLE REPLACEMENT NS oN CPU

Choose surviving samples to evolve

std::vector<int> surviving_ idxs(NUM_LIVE_SAMPLES - NUM_REP);
for (int i = NUM_REP; i < NUM_LIVE SAMPLES; i++)
{
surviving_idxs[i - NUM_REP] = i;
}
std: :random_shuffle(surviving_idxs.begin(), surviving idxs.end());
std::vector<int> copy_idxs(NUM_REP);
for (int i = 0; 1 < NUM_REP; 1i++)
{

copy_idxs[i] = surviving_idxs[i];
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MULTIPLE REPLACEMENT NS oN CPU

Evolve each sample simultaneously

std::vector<std::vector<double> > theta_in_vec(NUM_REP);
std::vector<std::vector<double> > theta_out_vec(NUM_REP);
for (int i = 0; 1 < NUM_REP; 1i++)
{
theta_in_vec[i] = live_samples[copy_idxs[i]].get_theta();
}
#fpragma omp parallel for
for (int i = 0; i1 < NUM_REP; 1i++)
{
mcmc_explore(theta_in_vec[i], logLstar, model, live_samples,
theta_out_vec[i]);
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GPU approach




OVERVIEW

- Main idea: use hardware originally meant for graphics computations for general
purpose computation

- Relative to CPUs, GPUs have many more, slower cores
- Parallel portion of program needs to be SIMD for maximum performance

- Several languages/libraries exist for running code on GPUs

- Khronos Group’s OpenCL
- Nivida's CUDA
- Apple's Metal

- We'll focus on OpenCL
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- OpenCL code runs on many device types (AMD and Nvidia GPUs, CPUs, even the Xeon
Phi)

- Kernels contain code that is run by each work item

- Work items are grouped into work groups

- Each work item operates on a different piece of data stream

- Branches within kernel are inefficient

- On Nvidia GPUs, CUDA can perform better for some code, but 1-to-1 comparison is
difficult

4



PARALLEL MODEL EVALUATION ON GPU

- Nested sampling portion of code is straightforward
- Complexity arises in problem-specific code
- Example code is idiomatic C++ and uses OpenCL

- There is a lot more work involved in adapting code for OpenCL, compared with the
previous examples
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PARALLEL MODEL EVALUATION ON GPU

Model class

class Model
{
public:

Model(std: :vector<double> data_in, cl::Buffer buffer A,
cl::Buffer buffer_B, cl::Buffer buffer_f,
cl::Buffer buffer_data, cl::Buffer buffer_sq_error,
cl::CommandQueue queue, cl::Context context,
cl::Kernel kernel);

double compute_log likelihood(std::vector<double> theta);

void set_data(std::vector<double> data_in);

std::vector<double> get_data();
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PARALLEL MODEL EVALUATION ON GPU

Model class, continued

private:
std::vector<double> data;
int num_data;
cl::Buffer buffer_A;
cl::Buffer buffer_B;
cl::Buffer buffer_f;
cl::Buffer buffer_data;
cl::Buffer buffer_sq_error;
cl::CommandQueue queue;
cl::Context context;
cl::Kernel kernel_compute_sq_error;

b
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PARALLEL MODEL EVALUATION ON GPU

Setup

std::vector<cl::Platform> all_platforms;
cl::Platform::get(&all_platforms);

cl::Platform default_platform = all_platforms[0];
std::vector<cl::Device> all_devices;
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);
cl::Device default_device = all _devices[0];

cl::Context context({ default_device });

cl::Program::Sources sources;
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PARALLEL MODEL EVALUATION ON GPU

Kernel

std::string kernel_code =
"kernel void compute_sq_error("
"global const double * A, global const double * B,"
"global const double = f, global const double * data,"
"const int num_data, const int num_atoms,"
"global double * sq_error)"
ll{ll
" double pi = 3.14159265359;"
" int i = get_global_id(0);"
double mock = 0.0;"
sq_error[i] 0.0;"
double time = data[num_data + i];"
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PARALLEL MODEL EVALUATION ON GPU

Kernel, continued

"

for (int j = 0; j < num_atoms; j++)"
{u
mock += A[j] * COS(2 * pi * f[j] * time) "
B[j] * Sin(2 * pi * f[j] * time);"
}u

sq_error[i] = (mock - data[i]) * (mock - data[i]);"
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PARALLEL MODEL EVALUATION ON GPU

Final setup

sources.push_back(

cl:

std: :make_pair(kernel_code.c_str(), kernel_code.length()));

:Program program(context, sources);

program.build(all_devices);

cl:
cl:
cl:
cl:

cl:

:Buffer buffer A(context, CL_MEM_READ WRITE, sizeof(double) * NA);
:Buffer buffer B(context, CL_MEM_READ WRITE, sizeof(double) * NA);
:Buffer buffer_ f(context, CL_MEM_READ WRITE, sizeof(double) * NA);
:Buffer buffer_data(context, CL_MEM_READ_WRITE,

sizeof(double) * (2 * num_data + 1));

:Buffer buffer_sq_error(context, CL_MEM_READ_WRITE,

sizeof(double) * num_data);
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PARALLEL MODEL EVALUATION ON GPU

Final setup, continued

cl::CommandQueue queue(context, default_device);

queue.enqueueWriteBuffer(buffer_data, CL_TRUE, O,
sizeof(double) * (2 * num_data + 1), data.data());

cl::Kernel kernel_compute_sq_error = cl::Kernel(program,
"compute_sq_error");

Model model(data, buffer A, buffer B, buffer f, buffer data,
buffer_sq_error, queue, context, kernel_compute_sq_error);
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PARALLEL MODEL EVALUATION ON GPU

Log-likelihood function

double Model: :compute_log likelihood(std::vector<double> theta)
{

// Scale the parameters before sending them to the device

double A[NUM_ATOMS];

double B[NUM_ATOMS];

double f[NUM_ATOMS];

const int param_per_atom = NUM_PARAMS / NUM_ATOMS;

for (int i = 0; i < NUM_ATOMS; i++)

{
A[i] = (AMAX - AMIN) * theta[i * param_per_atom + 0] + AMIN;
B[i] = (AMAX - AMIN) = thetal[i * param_per_atom + 1] + AMIN;
f[i] = (FMAX - FMIN) * theta[i * param_per_atom + 2] + FMIN;
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PARALLEL MODEL EVALUATION ON GPU

Log-likelihood function, continued

queue.enqueueWriteBuffer(buffer_A, CL_TRUE, 0,
sizeof(double) * NUM_ATOMS, A);

queue.enqueueWriteBuffer(buffer_B, CL_TRUE, 0,
sizeof(double) * NUM_ATOMS, B);

queue.enqueueWriteBuffer(buffer_f, CL_TRUE, 0,
sizeof(double) * NUM_ATOMS, f);

kernel_compute_sq_error.
kernel_compute_sq_error.
kernel_compute_sq_error.
kernel_compute_sq_error.
.setArg(4,
kernel_compute_sq_error.
kernel_compute_sq_error.

kernel_compute_sq_error

setArg(o,
setArg(1,
setArg(2,
setArg(3,

setArg(5,
setArg(6,

buffer A);

buffer B);

buffer f);

buffer data);
num_data);
NUM_ATOMS ) ;
buffer_sq_error);
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PARALLEL MODEL EVALUATION ON GPU

Log-likelihood function, continued

queue.enqueueNDRangeKernel(kernel compute_sq_error,
cl::NullRange, cl::NDRange(num_data), cl::NullRange);

queue.finish();

double sq_error[num_datal;

queue.enqueueReadBuffer(buffer_sq_error, CL_TRUE, 0,
num_data * sizeof(double), sq_error);
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PARALLEL MODEL EVALUATION ON GPU

Log-likelihood function, continued

double g2;
double loglL;
const double sigma = 0.5;

g2 = 0.0;
for (int i = 0; i < num_data; i++)
{

g2 += sq_error[i];
}
logL = -1 = g2 / (2 * sigma * sigma);
return loglL;
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Further suggestions and
conclusion




SUGGESTION: CLOUD COMPUTING

If your access to parallel computing hardware is insufficient, consider cloud computing

- Google Cloud Platform
- Amazon Elastic Cloud Compute (EC2)

- Microsoft Azure

Each platform has a free trial with limited access to HPC resources

Example: NVIDIA Tesla K80, in Europe, costs $0.49 per hour per die
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SUGGESTION: CLOUD COMPUTING

Common features

- Create VMs with a variety of resource configurations
- Connect using SSH to administer and run code

- Create instances with GPUs

- Create clusters

- Only pay for what you use

If you want to write HPC code on a minimal system like a Chromebook, Amazon has a
somewhat minimal cloud IDE, Cloud9
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CONCLUSION

- Model comparison comprises an important class of inference problems

- Existing techniques, e.g,, nested sampling, can be parallelized in a variety of ways
using a variety of hardware

- Itis critically important to match algorithm to hardware

- Examples have been shown that address implementation on the Xeon Phi, CPUs, and
GPUs

- Cloud computing platforms can provide an attractive alternative to dedicated
hardware
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RESOURCES

- Lawrence Livermore National Lab’s “Introduction to Parallel Computing”
https://computing.llnl.gov/tutorials/parallel_comp/

- Best practice guide for older Xeon Phi models (Knight's Corner): http:
//www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/

- Best practice guide for newer Xeon Phi models (Knight's Landing): http://www.
prace-ri.eu/best-practice-guide-knights-landing-january-2017/

- Introduction to OpenCL: http://www.drdobbs.com/parallel/
a-gentle-introduction-to-opencl/231002854
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